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What is this?
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Problem Space

« There are problems in which a number of points are potentially good solutions,
local optima, while not necessarily being a global best answer.

« Multi-modal optimization problems are of interest to researchers solving real
world problems in areas such as control systems and power engineering tasks.
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Genetic Algorithms

* A Genetic Algorithm (GA) is a heuristic search technique inspired by concepts
of evolutionary biology.

— Population — An initially randomly generated set of possible solutions.
— Variation Operators — mutation and crossover.

— Fitness Function — evaluation of a solution.

— Selection and Replacement operators.

« Conventional GA’s tend to converge to just one optima.

« A 2008 review of papers mainly in IEEE Transactions and IEE proceedings
found ~1000 papers dealing with power engineering and GA’s. (. Rajkumar, etat)
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GA Variations

» Deterministic Crowding (DC)

— After crossover and mutation, each resulting new solution replaces
the most similar parent used to create it if the new solution has a
higher fitness value.

» Restricted Tournament Selection (RTS)

— The new candidate solutions compete with a fixed number of
randomly chosen individuals (called a Crowding Factor) from the
population. The individual from the CF that is closest to a given
new solution competes with that solution for survival.

How do we determine similarity and closeness? A Euclidean distance
measure is common and used in a great variety of algorithms. How
does it compare with a Mahalanobis distance measure when utilizing
DC and RTS.
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Euclidean Distance

« Simple and familiar.
« Potential issues with scale and correlation.

d(x y) =204 -y
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Mahalanobis

It is based on correlations between variables by which different patterns can be
identified and analyzed. It is a useful way of determining similarity of an unknown
sample set or point to a known one. It differs from Euclidean distance in that it takes
into account the correlations of the data set and is scale-invariant, i.e. not dependent
on the scale of measurements.

T = (I]_,:I:g,:l:g, s J:EN)T

H = {#1:”’2:#‘3: P :IJH'N)T

Das(x) = /(z — p) TSz — p).

What is st ?
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Covariance Matrix

What is S -1? This is the inverse covariance matrix. The
covariance is always calculated between 2 dimensions.
Covariance is a measure of how much the dimensions vary
from the mean with respect to each other. If we have a dataset
with more than 2 dimensions there are several covariance
calculations that can be performed.

Ex. 3 dimensions (X,Y,z)
cov (X,y)
cov (x,2)
cov (y,2)

Given n dimensions we can calculate them all and put them in a
matrix.

Onxn — (C?;,j, Ci,j — COU(D?:TH?;, D???’?J))
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Covariance Matrix Reloaded

cov(z,x) cov(x,y) cov(z,z)
C=| cov(y,z) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)

Example in 3 dimensions. Note that the covariance of a variable

with itself is just the variance (diagonal).
Also since cov(a,b) == cov(b,a) this matrix is symmetrical about

the main diagonal. Finally this is a square matrix (nxn).
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Sphere Rastrigin Ackley Griewangk M6

lteration® | 400 400 400 400 400
lteration® | 5 500 500 500 i
lteration> | gog 600 600 600 i
Optima? 1 4 1 5 25
Optima3 1 3 1 5 i
Optima® 1 32 1 5 i
niche 0.2 0.1 1 0.9 0.5
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Global Optimum Results

DC RTS
Functions Euclid Mahal Euclid Mabhal Dim.
Sphere 100 100 97 100 2
Rastrigin 98 98 91 89 2
Ackley 100 100 70 95 2
Griewangk 20 11 0 1 2
M6 3 2 3 4 2
Sphere 100 100 61 100 3
Rastrigin 49 42 35 35 3
Ackley 98 93 17 73 3
Griewangk 0 1 0 0 3
Sphere 100 100 5 97 5
Rastrigin 0 1 1 3 5
Ackley 35 36 0 33 5
Griewangk 0 0 0 0 5
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RTS Average Best Fithess
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DC Average Best Fitness

DC D2 DC D3
0.4 1.6
o 0.35 » 14
0 0
o 0.3 o 1.2
c k=
T 0.25 i 1
n 0.2 o 0.8
Q [
o 0.15 m 0.6
g 01 2 0.4
< 0.05 <02
0 , , , [ I 0 , Cem [ W
Sphere Rastrigin Ackley Griewangk Sphere Rastrigin Ackley Griewangk
O Euclid @ Mahalanobis | @ Euclid @ Mahalanobis |
DC D5
8
o !
3 6
S
5
D 4
(]
o 3
22
T N
0 : : [T
Sphere Rastrigin Ackley Griewangk
O Euclid @ Mahalanobis |




~_ISRCS 2010

Peak Counts

RTS Peak Count DC Peak Count
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Conclusion

* For DC there is little to no difference between distance measures with
the possible exception of global optima.

* RTS consistently showed improvement using Mahalanobis in all three
guality measures.
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Good Genetics — Idaho 2009 Record
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